303 research outputs found

    Dark Matter Interference

    Full text link
    We study different patterns of interference in WIMP-nuclei elastic scattering that can accommodate the DAMA and CoGeNT experiments via an isospin violating ratio fn/fp=−0.71f_n/f_p=-0.71. We study interference between the following pairs of mediators: Z and Z', Z' and Higgs, and two Higgs fields. We show under what conditions interference works. We also demonstrate that in the case of the two Higgs interference, an explanation of the DAMA/CoGeNT is consistent with Electroweak Baryogenesis scenarios based on two Higgs doublet models proposed in the past.Comment: 14 pages, 2 figures, references and appendix added, match with the published versio

    Controlled release of antimicrobial compounds from highly swellable polymers.

    Get PDF
    The suitability of antimicrobial release films made from highly swellable polymers for use in food packaging was evaluated. The possibility of modulating the release kinetics of active compounds either by regulating the degree of cross-link of the polymer matrix or by using multilayer structures was addressed. The release kinetics of lysozyme, nisin, and sodium benzoate (active compounds with different molecular weights) were determined at ambient temperature (25 degrees C). The effectiveness of the proposed active films in inhibiting microbial growth was addressed by determining the antimicrobial efficiency of the released active compounds. Micrococcus lysodeikticus, Alicyclobacillus acidoterrestris, and Saccharomyces cerevisiae were used to test the antimicrobial efficiency of released lysozyme, nisin, and sodium benzoate, respectively. Results indicate that the release kinetics of both lysozyme and nisin can be modulated through the degree of cross-link of the polymer matrix, whereas multilayer structures need to be used to control the release kinetics of sodium benzoate. All the active compounds released from the investigated active films were effective in inhibiting microbial growth

    Effect of Fiber Information on Consumer's Expectation and Liking of Wheat Bran Enriched Pasta

    Get PDF
    The need to promote a diet rich in wholegrain has been recognized as an important task in nutrition education. Despite this, the intake of fiber in Western countries is below the recommended 25 g per day. The aim of the study was to evaluate the impact of wheat bran addition on the sensory quality of durum wheat spaghetti and to evaluate the effect of fiber information on consumer's acceptability and expectation. Information about fiber content had a positive impact on consumer's expected product quality but only for bran addition equal or higher than 20%. Consumers completely assimilated their liking in the direction of expectations for spaghetti with 20 and 25% of bran addition. Assimilation was incomplete for the 30% added sample indicating that the health benefit of eating fiber did not compensate the decrease in liking. The effect of information varied according to consumers' frequency consumption of bran-enriched pasta. Non-users showed a negative disconfirmation starting with a 20% bran addition, whereas for low-and high-users disconfirmation occurred at a higher bran addition. A complete assimilation effect was seen only for non-users, indicating that fiber information had an impact only for those consumers who actually do not consume wholegrain pasta

    On the Importance of Electroweak Corrections for Majorana Dark Matter Indirect Detection

    Full text link
    Recent analyses have shown that the inclusion of electroweak corrections can alter significantly the energy spectra of Standard Model particles originated from dark matter annihilations. We investigate the important situation where the radiation of electroweak gauge bosons has a substantial influence: a Majorana dark matter particle annihilating into two light fermions. This process is in p-wave and hence suppressed by the small value of the relative velocity of the annihilating particles. The inclusion of electroweak radiation eludes this suppression and opens up a potentially sizeable s-wave contribution to the annihilation cross section. We study this effect in detail and explore its impact on the fluxes of stable particles resulting from the dark matter annihilations, which are relevant for dark matter indirect searches. We also discuss the effective field theory approach, pointing out that the opening of the s-wave is missed at the level of dimension-six operators and only encoded by higher orders.Comment: 25 pages, 6 figures. Minor corrections to match version published in JCA

    Anthropic solution to the magnetic muon anomaly: the charged see-saw

    Full text link
    We present models of new physics that can explain the muon g-2 anomaly in accord with with the assumption that the only scalar existing at the weak scale is the Higgs, as suggested by anthropic selection. Such models are dubbed "charged see-saw" because the muon mass term is mediated by heavy leptons. The electroweak contribution to the g-2 gets modified by order one factors, giving an anomaly of the same order as the observed hint, which is strongly correlated with a modification of the Higgs coupling to the muon.Comment: 21 pages, many equations despite the first word in the title. v3: loop function G_WN corrected, conclusions unchange

    Simulated Milky Way analogues: implications for dark matter direct searches

    Get PDF
    We study the implications of galaxy formation on dark matter direct detection using high resolution hydrodynamic simulations of Milky Way-like galaxies simulated within the eagle and apostle projects. We identify MilkyWay analogues that satisfy observational constraints on the Milky Way rotation curve and total stellar mass. We then extract the dark matter density and velocity distribution in the Solar neighbourhood for this set of Milky Way analogues, and use them to analyse the results of current direct detection experiments. For most Milky Way analogues, the event rates in direct detection experiments obtained from the best _t Maxwellian distribution (with peak speed of 223 { 289 km=s) are similar to those obtained directly from the simulations. As a consequence, the allowed regions and exclusion limits set by direct detection experiments in the dark matter mass and spin-independent cross section plane shift by a few GeV compared to the Standard Halo Model, at low dark matter masses. For each dark matter mass, the halo-to-halo variation of the local dark matter density results in an overall shift of the allowed regions and exclusion limits for the cross section. However, the compatibility of the possible hints for a dark matter signal from DAMA and CDMS-Si and null results from LUX and SuperCDMS is not improved

    Pseudo Goldstone Bosons Phenomenology in Minimal Walking Technicolor

    Full text link
    We construct the non-linear realized Lagrangian for the Goldstone Bosons associated to the breaking pattern of SU(4) to SO(4). This pattern is expected to occur in any Technicolor extension of the standard model featuring two Dirac fermions transforming according to real representations of the underlying gauge group. We concentrate on the Minimal Walking Technicolor quantum number assignments with respect to the standard model symmetries. We demonstrate that for, any choice of the quantum numbers, consistent with gauge and Witten anomalies the spectrum of the pseudo Goldstone Bosons contains electrically doubly charged states which can be discovered at the Large Hadron Collider.Comment: 25 pages, 5 figure

    Colored Resonant Signals at the LHC: Largest Rate and Simplest Topology

    Get PDF
    We study the colored resonance production at the LHC in a most general approach. We classify the possible colored resonances based on group theory decomposition, and construct their effective interactions with light partons. The production cross section from annihilation of valence quarks or gluons may be on the order of 400 - 1000 pb at LHC energies for a mass of 1 TeV with nominal couplings, leading to the largest production rates for new physics at the TeV scale, and simplest event topology with dijet final states. We apply the new dijet data from the LHC experiments to put bounds on various possible colored resonant states. The current bounds range from 0.9 to 2.7 TeV. The formulation is readily applicable for future searches including other decay modes.Comment: 29 pages, 9 figures. References updated and additional K-factors include

    Probing Colored Particles with Photons, Leptons, and Jets

    Full text link
    If pairs of new colored particles are produced at the Large Hadron Collider, determining their quantum numbers, and even discovering them, can be non-trivial. We suggest that valuable information can be obtained by measuring the resonant signals of their near-threshold QCD bound states. If the particles are charged, the resulting signatures include photons and leptons and are sufficiently rich for unambiguously determining their various quantum numbers, including the charge, color representation and spin, and obtaining a precise mass measurement. These signals provide well-motivated benchmark models for resonance searches in the dijet, photon+jet, diphoton and dilepton channels. While these measurements require that the lifetime of the new particles be not too short, the resulting limits, unlike those from direct searches for pair production above threshold, do not depend on the particles' decay modes. These limits may be competitive with more direct searches if the particles decay in an obscure way.Comment: 39 pages, 9 figures; v2: more recent searches include

    Dark Matter attempts for CoGeNT and DAMA

    Full text link
    Recently, the CoGeNT collaboration presented a positive signal for an annual modulation in their data set. In light of the long standing annual modulation signal in DAMA/LIBRA, we analyze the compatibility of both of these signal within the hypothesis of dark matter (DM) scattering on nuclei, taking into account existing experimental constraints. We consider the cases of elastic and inelastic scattering with either spin-dependent or spin-independent coupling to nucleons. We allow for isospin violating interactions as well as for light mediators. We find that there is some tension between the size of the modulation signal and the time-integrated event excess in CoGeNT, making it difficult to explain both simultaneously. Moreover, within the wide range of DM interaction models considered, we do not find a simultaneous explanation of CoGeNT and DAMA/LIBRA compatible with constraints from other experiments. However, in certain cases part of the data can be made consistent. For example, the modulation signal from CoGeNT becomes consistent with the total rate and with limits from other DM searches at 90% CL (but not with the DAMA/LIBRA signal) if DM scattering is inelastic spin-independent with just the right couplings to protons and neutrons to reduce the scattering rate on xenon. Conversely the DAMA/LIBRA signal (but not CoGeNT) can be explained by spin-dependent inelastic DM scattering.Comment: 20 pages, 9 figure
    • …
    corecore